

Vol 12 Issue 09 September 2025

EcoWatts: An IoT-Driven Platform for Chemical Wastewater Sensing and Sustainable Power Generation

[1] Zubin Dhanjisha Daruwala, [2] Mrudang Ashish Shah, [3] Neel Kishor Bhura, [4] Vaibhav Hemant Jotangiya, [5] Yash DipakKumar Kanani, [6] Khanjan Krushnakant Kukadia

[1] Civil Engineering, Gandhinagar Institute of Technology, Gandhinagar University, Gujarat, India [2] Computer Science Engineering, Gandhinagar Institute of Technology, Gandhinagar University, Gujarat, India [3] Information Technology, Gandhinagar University Technology Engineering, Gujarat, India [4] Mechanical Engineering, Gandhinagar Institute of Technology, Gandhinagar University, Gujarat, India [5] Faculty of Computer Science Department, Gandhinagar University, Gujarat, India [6] Bachelor of Design, Gandhinagar Institute of Technology, Gandhinagar University Gujarat, India Email: [1] 230101102011@gandhinagaruni.ac.in, [2] 240101027250@gandhinagaruni.ac.in, [5] yash.kanani@gandhinagaruni.ac.in [6] 241228064004@gandhinagaruni.ac.in

Guide

[1]Balvant Shantilal Khara(Assistant Professor, Computer Department, Gandhinagar University)[2]Preneta Siddharth Anand (Assistant Professor, Computer Department, Gandhinagar University)

Abstract—Here is a complete hardware-level analysis of a chemical waste monitoring system based on ESP32. Multiple modules like gas (MQ135), pH, temperature (DS18B20 / MAX31865), and flow (YF-S201) are interfaced with human-readable interfaces like an OLED display and GSM-based alerting mechanisms. Hardware integration, calibration processes, and response logic are focused on. System testing was conducted in laboratory conditions, wherein pre-determined levels effectively initiated real-time remediation measures to ensure smooth and fault-free operation. As a complement to monitoring, this research proposes a new system of energy recovery using chemical wastewater as a steam turbine-based electricity generation feedstock. Other complementary technologies like anaerobic digestion, waste heat recovery, and chemical-to-thermal energy conversion are also addressed. Application of these approaches to steam turbine technology exhibits their prospects for enhancing technical effectiveness while providing environmental sustainability in energy generation.

Index Terms— Chemical Waste Monitoring, ESP32 Microcontroller, 2. Gas and pH Sensors, Real-Time Environmental Sensing, IoT-Based Monitoring System3., Flow Rate Measurement, Temperature Sensing4., GSM-Based Alert System, Embedded System Design, 5. Automated Waste Mitigation, Chemical Wastewater, 6. Energy Recovery, Steam Turbine, 7. Sustainable Energy, Waste Heat Utilization, 8. Power Generation, Industrial Waste Management, 9. Thermal Energy Conversion

I. INTRODUCTION

Industrial chemical effluents carry serious health and environmental risks because of their high organic matter content, heavy metals, and other toxic chemicals. Good monitoring and treatment facilities are necessary to reduce such risks and provide environmental protection.

This work suggests a modular ESP32-based monitoring system that automatically monitors important wastewater parameters—gas concentration, pH, temperature, and flow rate. This system incorporates automated response functionalities via relays and MOSFET logic channels, which activate pumps, ventilation, or neutralization systems upon exceeding critical thresholds.

Traditional wastewater treatment technologies—physical, chemical, and biological—are both resource and

environmentally intensive. Current studies point toward emerging technologies like anaerobic digestion, bio electrochemical systems, and waste heat recovery, which treat wastewater as well as facilitate energy recovery [1,2,35].

In this paper, the feasibility of incorporating a steam turbine-based power generation system along with wastewater treatment is discussed. Waste heat recovery, chemical-to-thermal conversion, and anaerobic digestion are considered as ways to lower the energy reliance on fossil fuels while enhancing sustainability.

II. SYSTEM OVERVIEW

- Microcontroller: ESP32-WROOM-32
- Sensors: MQ135 (gas), Analog pH kit, DS18B20 / MAX31865 (temperature), YF-S201 (flow)

Vol 12 Issue 09 September 2025

- Interfaces: SSD1306 OLED, SIM800L GSM, relay module, IRF540N MOSFET
- Power Supply: 5 V USB / Lithium battery

Embedded figures such as sensor block diagram, wiring in breadboard, and system flowcharts for convenient reference [Start]

III. SENSOR & INTERFACE MODULES

Gas Sensor (MQ135)

- Function: CO₂, NH₃, NO_x, benzene, smoke detection by SnO₂ resistance variation.
- Calibration & Accuracy: 10–10 000 ppm response with ~10–20% accuracy depending on calibration and environmental interference.
- Interfacing: Connect GPIO34 pin of ADC to analog output; Rs/Ro ratio to ppm conversion from empirical curve.
- Role: Initiates ventilation relay upon gas striking safety threshold.

pH Sensor (Analog Kit)

- Parts: Electrode probe along with conditioning board.
- Operation: Linear dependence of ion-selective voltage on ~0–3 V on pH 0–14.
- Interface: Ammetered to ESP32 ADC (GPIO35), calibrated to standard buffer solutions.
- Application: Monitors acidity/alkalinity in real time, starts neutralization systems if pH < 6.5 or > 8.5.

DS18B20 / MAX31865 Temperature Sensor

• DS18B20: Water-resistant, digital, OneWire protocol.

 MAX31865: Includes PT100/PT1000 RTDs via SPI for more precise measurements. Use Case: Offers safe thermal use; if the temperature exceeds 40 °C, it alerts and reacts.

YF-S201 Flow Sensor

- Mechanism: Hall effect rotor pulses proportional to flow volume.
- Calculation: FlowRate = (pulseCount/time)/calibrationFactor.
- Interface: Interrupt on GPIO25; real-time flow observation to identify discharge abnormalities.

Load Cell + HX711

- · Function: Weighs solid/semisolid residue mass.
- Interface: Amplifier interfaces with ESP32 GPIO (e.g., D12/D13).
- Use Case: For systems that have sludge or particulate waste disposal—optional module.

IV. HUMAN-READABLE INTERFACES & COMMUNICATION

OLED Display (SSD1306)

- Function: Offers real-time feedback of gas (ADC), temperature (°C), pH, and flow (L/min) values.
- Interface: I²C on ESP32 GPIO21 (SDA) / GPIO22 (SCL), 128×64 pixels.
- Refresh Rate: 1 Hz update cycle with Adafruit graphics library.

GSM Module (SIM800L)

- Interface: UART on GPIO16 (RX), GPIO17 (TX).
- Function: Triggers SMS notifications for sensor readings beyond thresholds.
- Power: Require stable 3.7–4.2 V line to avoid GSM communication dropouts.

Relay & MOSFET Control (IRF540N)

- Relay Module: Switches and isolates external devices like pumps or fans.
- MOSFET Driver: IRF540N enables high-current switching (i.e. LED matrix).
- GPIO Control: Actuated via digital output GPIO26 for self-driven mitigation.

V. SYSTEM LOGIC AND SOFTWARE INTEGRATION

Continuous Monitoring Loop

- Second-by-second polling of sensors; interrupt counting through flow; temperature through OneWire/SPI; analog reading for gas/pH.
- Conditional Activation Logic
- Whenever any sensor crosses its threshold:
- · Switches on relay
- Sends SMS through SIM800L
- · Shows alarm state on OLED

Vol 12 Issue 09 September 2025

Failsafe: Automatic shutdown due to communication or sensor failure.

Calibration & Validation Procedures

- pH: Standard buffer solutions calibrated against.
- Gas: Scaled against known VOC concentrations.
- Flow: Standardized with measured volume for known time.

VI. EXPERIMENTAL RESULTS & FIELD TESTING

Parameter	Measured Value	Threshold	Action Taken
Gas	120 ppm	>100 ppm	Fan ON, SMS Alert
Temperature	45 °C	>40 °C	Pump ON, SMS Alert
pH	3.2	<6.5	Relay ON for Neutralization
Flow Rate	2.3 L/min	≥2.0 L/min	Normal Operation

Field tests under harsh lab conditions validated trigger reliability and system responsiveness.

VII. FIGURES AND ARCHITECTURE DIAGRAMS

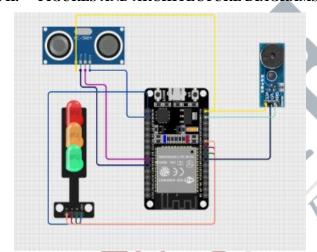


Fig. 1: Block diagram of ESP32 system with sensors and actuators

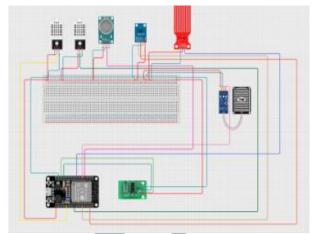


Fig. 2: Breadboard wiring layout for flow, gas, pH, temperature, OLED, GSM

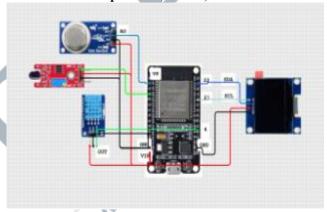


Fig. 3: Full system connectivity overview with relay and MOSFET control points

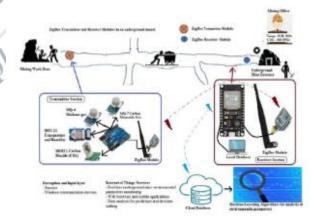


Fig. 4: High-level operational flowchart from sensing through alerting

VIII. WASTEWATER TREATMENT AND POWER GENERATION

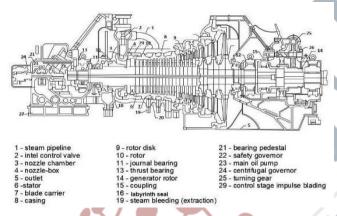
A. Production of Biogas using the Anaerobic Digestion Process

Anaerobic digestion is an anaerobic microbial process of the easily available organic waste material present in wastewater to transform into biogas in the absence of air

Vol 12 Issue 09 September 2025

supply. Biogas is used for heat as it is being burnt or else be upgraded to electricity. Some independent factors have a significant role in efficient biogas production like pH and temperature and retention time are very significant in efficient functioning of the anaerobic digestion process [1].

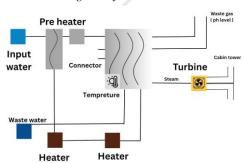
Table 1: Principal Parameters for Anaerobic Digestion


Parameter	Optimal Range	
Temperature	30-60 °C	
pH	6.5–7.5	
Retention Time	15–30 days	

B. Steam Turbine Technology

i. Fundamentals of Steam Turbine

Steam turbines are based on the concept of utilisation of steam thermal energy to produce mechanical energy. The steam acts on the blades when they pass over them in a way such that they rotate and rotate the turbine. The steam turbines comprise impulse turbines and reaction turbines. Waste heat recovered during steam generation can improve the efficiency of steam turbines [3].


ii. Figures: Steam Turbine

iii. Inlet with WWTPs

Use of sewage plants to power steam turbines renders possible the production of electricity via burning of sewage thermal energy. Effluent wastewater-treatment is an energy viable source. It is currently not commercially available technology but a leader solution in wastewater energy recovery from infrastructure [4].

iv. Figures: Line Diagram of Steam Turbine

C. Sustainability and Ecological Aspects

i. Mitigation and Environmental Impacts

Wastewater can reduce our reliance on traditional fossil fuels and reduce green house emissions. Green house gas emission of wastewater treatment can be minimized to a large extent by reusing waste heat as well as biogas. This is done in regenerative economics where investment as well as return on energy is optimized to the maximum possible extent to do as little harm to the environment as possible to as much an extent as possible with best use of resources [5].

D. Cases and Success Stories

There have been some case studies that have demonstrated the feasibility of retrofitting energy recovery technology in WWTPs [6]. Examples indicate the feasibility of fit-out of energy recovery systems within existing aged facilities as a bid to achieve environmentally (i.e., sustainability) and operationally (i.e., efficiency) benefits.

E. Limitations and Constraints

i. Cost Feasibility

The installation cost of the financial and operating class of steam turbines and waste heat recovery systems is enormous. It also has an even more intimidating return on investment (ROI). It costs a couple of years based on system complexity and energy recovery [7].

ii. Technical Challenges

Uncertainty of wastewater discharge is one of the principal technical problems, prohibiting uninterrupted generation of steam. Energy recovery from some of the chemical effluents has also not been considered a subject of research for decades, and further work needs to be done to make recovery of water economical [9]. Demonstration of the above technologies, particularly in the large-capacity plants injecting humongous quantities of water, is of paramount significance.

IX. DISCUSSION

Modularity: Independent calibration and upgradability of every sensor without system rewiring.

Scalability: Enables optional load cell, additional sensor channels, cloud integration.

Reliability: Double alerts (OLED + SMS), low-power design, fault-detection self-reset.

Compliance & Safety: Adherent to standard industrial safety levels; flexible adherence to local environment legislation.

X. FUTURE WORK

- Cloud Integration: Integrate with Firebase, Thingspeak, or AWS IoT for remote monitoring.
- Machine Learning: Anomaly detection powered by AI for predictive maintenance.
- Solar Power Architecture: Implement in off-grid areas using solar-battery modules.

Vol 12 Issue 09 September 2025

• Standardization: Comply with IEC 61010 or ISO 14001 industrial safety standards.

XI. LIMITATIONS

- Costliness of steam turbine infrastructure.
- Fluctuation in wastewater discharge makes continuous steam production unpredictable.

XII. FUTURE RESEARCH

- Low-temperature hybrid steam turbines.
- Intelligent automation utilizing AI for energy recovery optimization.
- Extension to broader application in agricultural and domestic wastewater.

Acknowledgement

The authors would like to thank the laboratory staff members and teaching staff, who guided and gave technical assistance during the course of this research. Special thanks are given to Gandhinagar Institute of Technology, Gandhinagar University's Department for offering laboratory facilities and required hardware validation and experimental testing resources. The authors also thank colleagues and peers for the useful comments and exchanges, which greatly enhanced the quality of this work.

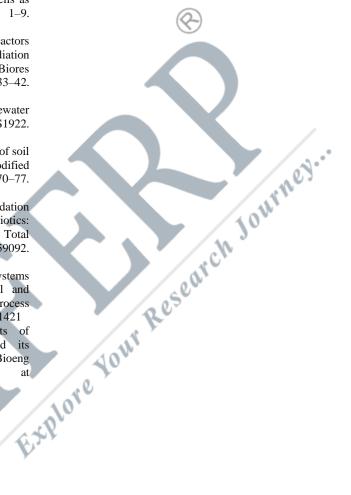
REFERENCES

- [1] S. Chen, B. Mulgrew, and P. M. Grant, "A clustering technique for digital communications channel equalization using radial basis function networks," IEEE Trans. on Neural Networks, vol. 4, pp. 570-578, July 1993.
- [2] J. U. Duncombe, "Infrared navigation—Part I: An assessment of feasibility," IEEE Trans. Electron Devices, vol. ED-11, pp. 34-39, Jan. 1959.
- [3] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller, "Rotation, scale, and translation resilient public watermarking for images," IEEE Trans. Image Process., vol. 10, no. 5, pp. 767-782, May 2001.
- [4] Abbas FN et al. "Capable of Gas Sensor MQ-135 to Monitor the Air Quality with Arduino UNO". IJERT, 2020. DOI:10.37624/IJERT/13.10.2020.2955-2959 ResearchGate
- [5] Beni Satria et al. "Monitoring Air Quality System Based on Smart Device Intelligent". Jurnal Ekonomi, 2023. DOI from ejournal.seaninstitute.or.id ejournal.seaninstitute.or.id
- [6] Kalamaras SD et al. "A Low-Cost IoT System Based on the ESP32 Microcontroller for Efficient Monitoring of a Pilot Anaerobic Biogas Reactor". Appl. Sci., 2025, 15(1), 34. DOI:10.3390/app15010034 mdpi.com
- [7] Environmental Monitoring IoT review: Journal of Environmental Management, 2021.
 DOI:10.1016/j.jenvman.2021.112510 sciencedirect
- [8] Abuhasel K, Kchaou M, Alquraish M et al (2021) Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities. Water 13:980. https://doi.org/10.3390/w13070980
- [9] Aiyer KS (2021) Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon 7(1):e05935–e05935. https://doi.org/10.1016/j.heliyon.2021.e05935

- [10] Amar Dubrovin I, Ouaknin Hirsch L, Rozenfeld S et al (2022) Hydrogen production in microbial electrolysis cells based on bacterial anodes encapsulated in a small bioreactor platform. Microorganisms 10:1007. https://doi.org/10.3390/microorganisms10051007
- [11] Armstrong R (2022) Living bricks can generate energy in the home and wean humanity off fossil fuels BT achieving building comfort by natural means. In: Sayigh A (ed) pp 25–46. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-04714-5_2
- [12] Balapure K, Bhatt N, Madamwar D (2015) Mineralization of reactive azo dyes present in simulated textile wastewater using down flow microaerophilic fixed film bioreactor. Biores Technol 175:1–7. https://doi.org/10.1016/j.biortech.2014.10.040
- [13] Chilakamarry CR, Sakinah AMM, Zularisam AW et al (2021) Glycerol waste to value added products and its potential applications. Syst Microbiol Biomanuf 1:378–396. https://doi.org/10.1007/s43393-021-00036-w
- [14] Debnath K, Dutta S (2023) Bio-electrochemical system analysis and improvement: a technical review. Cleaner Circular Bioecon 6:100052. https://doi.org/10.1016/j.clcb.2023.100052
- [15] Demirci S., ErdoG an B., Özcimder R (1998) Wastewater treatment at the petroleum refinery, Kirikkale, Turkey using some coagulants and Turkish clays as coagulant aids. Water Res 32(11):3495–3499. https://doi.org/10.1016/S0043-1354(98)00111-0
- [16] Dwivedi KA, Huang SJ, Wang CT, Kumar S (2022) Fundamental understanding of microbial fuel cell technology: recent development and challenges. Chemosphere 288(2):132446.
 - https://doi.org/10.1016/j.chemosphere.2021.132446
- [17] Gautam R, Ress NV, Wilckens RS, Ghosh UK (2023) Hydrogen production in microbial electrolysis cell and reactor digestate valorization for biochar – a noble attempt towards circular economy. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.07.190
- [18] Gupta SK et al (2022) Bioelectrochemical technologies for removal of xenobiotics from wastewater. Sustain Energy Technol Assess 49:101652. https://doi.org/10.1016/j.seta.2021.101652
- [19] Hamelers HVM et al (2009) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85:1673–1685. https://doi.org/10.1007/s00253-009-2357-1
- [20] He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18(19– 20):2009–2015. https://doi.org/10.1002/elan.200603628
- [21] Huang D-Y et al (2011) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 172(2):647–653. https://doi.org/10.1016/j.cej.2011.06.024
- [22] Jacobson KS, Drew DM, He Z (2011) Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Biores Technol 102(1):376–380. https://doi.org/10.1016/j.biortech.2010.06.030
- [23] Jadhav AD, Park SG, Pandit S, Yang E, Abdelkareem MA, Jang JK, Kyu-Jung Chae KJ (2022) Scalability of microbial electrochemical technologies: applications and challenges. Biores Technol 345:126498. https://doi.org/10.1016/j.biortech.2021.126498
- [24] Jain T et al (2017) Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci 114(5):944–949. https://doi.org/10.1073/pnas.1616408114

Vol 12 Issue 09 September 2025

- [25] Ji G et al (2002) Built subsurface flow wetland for treating heavy oil-produced water of Liaohe Oilfield in China. Ecol Eng 18(4):459–465. https://doi.org/10.1016/S0925-8574(01)00106-9
- [26] Jothinathan L et al (2021) Removal of organics in high strength petrochemical wastewater using combined microbubble-catalytic ozonation process. Chemosphere 263:127980. https://doi.org/10.1016/j.chemosphere.2020.127980
- [27] Kadier A et al (2016) Comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex Eng J 55(1):427–443. https://doi.org/10.1016/j.aej.2015.10.008
- [28] Kong F et al (2020) Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems. Renew Sustain Energy Rev 125:109816. https://doi.org/10.1016/j.rser.2020.109816
- [29] Koul B, Bhat N, Abubakar M et al (2022) Application of natural coagulants in water treatment: a sustainable alternative to chemicals. Water 14:3751. https://doi.org/10.3390/w14223751
- [30] Kumar N et al (2022) Modified 7-chloro-11H-indeno[1,2-b]quinoxaline heterocyclic system for biological activities. Catalysts. https://doi.org/10.3390/catal12020213
- [31] Kumar N, Sinha RV (2022) Potential applications of green synthesized nanoparticles in human diseases. 7(12):1796– 1801
- [32] Li H et al (2018) A continuous flow MFC-CW with a biofilm electrode reactor for the concurrent removal of sulfamethoxazole and its corresponding resistance genes. Sci Total Environ 637–638:295–305. https://doi.org/10.1016/j.scitotenv.2018.04.359
- [33] Li X, Wang X, Zhang Y, Cheng L, Liu J, Li F, Gao B, Zhou Q (2014) Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. RSC Adv 4:59803–59808. https://doi.org/10.1039/c4ra10673c
- [34] Lu L, Yazdi H et al (2014a) Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J Hazard Mater 274:8–15. https://doi.org/10.1016/j.jhazmat.2014.03.060
- [35] Lu L, Huggins T et al (2014b) Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 48(7):4021–4029. https://doi.org/10.1021/es4057906
- [36] Ma F et al (2009) Bioaugmentation application on enhancing the activated sludge system to contact oxidation system treatment petrochemical wastewater. Biores Technol 100(2):597–602. https://doi.org/10.1016/j.biortech.2008.06.066
- [37] Medeiros ADM, de Silva Junior CJG, da Amorim JDP et al (2022) Treatment of oily wastewater: methods, challenges, and trends. Processes 10:743. https://doi.org/10.3390/pr10040743
- [38] Mishra S et al (2023) Occurrence of antibiotics in wastewater: potential ecological risk and removal by anaerobic–aerobic systems. Environ Res 226:115678. https://doi.org/10.1016/j.envres.2023.115678
- [39] Mittal N, Kumar A (2022) Microbial fuel cell as water-energy-environment nexus: a relevant strategy for treating streamlined effluents. Energy Nexus 7:100097. https://doi.org/10.1016/j.nexus.2022.100097
- [40] Mohammadi L, Rahdar A, Bazrafshan E et al (2020) Petroleum hydrocarbon removal from wastewaters: a review. Processes 8:447. https://doi.org/10.3390/pr8040447


- [41] Nishio K, Hashimoto K, Watanabe K (2013) Digestion of algal biomass for electricity generation in microbial fuel cells. Biosci Biotechnol Biochem 77(3):670–672. https://doi.org/10.1271/bbb.120833
- [42] Pant D et al (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2(4):1248–1263. https://doi.org/10.1039/C1RA00839K
- [43] Priyadarshini M et al (2022) Application of microbial electrochemical technologies for the treatment of petrochemical wastewater with concomitant valuable recovery: a review. Environ Sci Pollut Res 29(41):61783–61802. https://doi.org/10.1007/s11356-021-14944-w
- [44] Ramírez-Vargas CA, Prado A, Arias CA, Carvalho PN, Esteve-Núñez A, Brix H (2018) Microbial electrochemical technologies for wastewater treatment: principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands. Water 10(9):1128. https://doi.org/10.3390/w10091128
- [45] Rousseau R et al (2020) Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl Energy 257. https://doi.org/10.1016/j.apenergy.2019.113938
- [46] Rozendal RA et al (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755. https://doi.org/10.1016/j.elecom.2009.07.008
- [47] Sarmin S et al (2020) Potentiality of petrochemical wastewater as substrate in microbial fuel cell. IOP Conf Ser: Mater Sci Eng 736(3):32015. https://doi.org/10.1088/1757-899X/736/3/032015
- [48] Sathya K, Nagarajan K, Carlin Geor Malar G et al (2022) A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from various sources. Appl Water Sci 12, 70. https://doi.org/10.1007/s13201-022-01594-7
- [49] Sevda S et al (2020) 7 Oil and petrochemical industries wastewater treatment in bioelectrochemical systems. In: Abbassi R et al (eds) Butterworth-Heinemann, pp 157–173. https://doi.org/10.1016/B978-0-12-817493-7.00007-2
- [50] Tabish AN, Farhat I, Irshad M et al (2023) Electrochemical insight into the use of microbial fuel cells for bioelectricity generation and wastewater treatment. Energies 16:2760. https://doi.org/10.3390/en16062760
- [51] Tang J, Bian Y, Jin S, Sun D, Ren ZJ (2022) Cathode material development in the past decade for H2 production from microbial electrolysis cells. ACS Environ Au 2(1):20–29. https://doi.org/10.1021/acsenvironau.1c00021
- [52] Tavker N, Kumar N (2023) Chapter 6 Bioelectrochemical systems: understanding the basics and overcoming the challenges. In: Shah MP et al (eds) Elsevier, pp 79–98. https://doi.org/10.1016/B978-0-323-88505-8.00003-6
- [53] Varjani S, Upasani V (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegradation 120:71–83. https://doi.org/10.1016/j.ibiod.2017.02.006
- [54] Vishwanathan AS (2021) Microbial fuel cells: a comprehensive review for beginners. 3 Biotech 11(5):248. https://doi.org/10.1007/s13205-021-02802-y
- [55] Wang X et al (2012) Bioelectrochemical stimulation of petroleum hydrocarbon biodegradation in saline soil with Utube microbial fuel cells. Biotechnol Bioeng 109(2):426–433. https://doi.org/10.1002/bit.23351

Vol 12 Issue 09 September 2025

- [56] Wang B et al (2017) Investigation of combined adsorption-coagulation process for treatment of petroleum refinery effluent. Environ Technol 38(4):456–466. https://doi.org/10.1080/09593330.2016.1197319
- [57] Wiltschi B, Cernava T, Dennig A, Casas MG, Geier M, Gruber S, Haberbauer M, Heidinger P, Acero EH, Kratzer R, Luley-Goedl C et al (2020) Enzymes revolutionize the bioproduction of value-added compounds: from enzyme discovery to special applications. Biotechnol Adv 40:107520. https://doi.org/10.1016/j.biotechadv.2020.107520
- [58] Xiao X (2022) The direct use of enzymatic biofuel cells as functional bioelectronics. eScience 2(1), 1–9. https://doi.org/10.1016/j.esci.2021.12.005
- [59] Yeruva DK et al (2015) Integrating sequencing batch reactors with bio-electrochemical treatment for improving remediation efficiency of complex petrochemical wastewater. Biores Technol 188:33–42. https://doi.org/10.1016/j.biortech.2015.02.014
- [60] Yu L, Han M, He F (2017) A review on oily wastewater treatment. Arab J Chem 10:S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020
- [61] Yu B, Li Y, Feng L (2019) Increasing the performance of soil microbial fuel cells with a bentonite-Fe and Fe3O4 modified anode. J Hazard Mater 377:70–77. https://doi.org/10.1016/j.jhazmat.2019.05.052
- [62] Yuan Q et al (2023) Electrochemical advanced oxidation processes (EAOPs) for degradation of antibiotics: performance, mechanisms, and perspectives. Sci Total Environ 856:159092. https://doi.org/10.1016/j.scitotenv.2022.159092
- [63] Zhang S et al (2020) A review of bioelectrochemical systems for antibiotic removal: efficient antibiotic removal and dissemination of antibiotic resistance genes. J Water Process Eng 37:101421. https://doi.org/10.1016/j.jwpe.2020.101421
- [64] Zheng T et al (2020) Progress and prospects of bioelectrochemical systems: electron transfer and its applications in microbial metabolism. Front Bioeng Biotechnol.

 Available at https://doi.org/10.3389/fbioe.2020.00010

